Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Viruses ; 13(8)2021 08 02.
Article in English | MEDLINE | ID: covidwho-1335237

ABSTRACT

To explore the SARS-CoV-2 pandemic in Algeria, a dataset comprising ninety-five genomes originating from SARS-CoV-2 sampled from Algeria and other countries worldwide, from 24 December 2019, through 4 March 2021, was thoroughly examined. While performing a multi-component analysis regarding the Algerian outbreak, the toolkit of phylogenetic, phylogeographic, haplotype, and genomic analysis were effectively implemented. We estimated the Time to the Most Recent Common Ancestor (TMRCA) in reference to the Algerian pandemic and highlighted the multiple introductions of the disease and the missing data depicted in the transmission loop. In addition, we emphasized the significant role played by local and international travels in disease dissemination. Most importantly, we unveiled mutational patterns, the effect of unique mutations on corresponding proteins, and the relatedness regarding the Algerian sequences to other sequences worldwide. Our results revealed individual amino-acid replacements such as the deleterious replacement A23T in the orf3a gene in Algeria_EPI_ISL_418241. Additionally, a connection between Algeria_EPI_ISL_420037 and sequences originating from the USA was observed through a USA characteristic amino-acid replacement T1004I in the nsp3 gene, found in the aforementioned Algerian sequence. Similarly, successful tracing could be established, such as Algeria/G37318-8849/2020|EPI_ISL_766863, which was imported from Saudi Arabia during the pilgrimage. Lastly, we assessed the Algerian mitigation measures regarding disease containment using statistical analyses.


Subject(s)
COVID-19/virology , Evolution, Molecular , SARS-CoV-2/genetics , Algeria/epidemiology , COVID-19/epidemiology , COVID-19/transmission , Genome, Viral , Genomics , Haplotypes , Humans , Mutation , Pandemics , Phylogeny , Phylogeography , SARS-CoV-2/classification , SARS-CoV-2/isolation & purification , Saudi Arabia/epidemiology , Travel
2.
Genes (Basel) ; 12(2)2021 01 29.
Article in English | MEDLINE | ID: covidwho-1055035

ABSTRACT

SARS-CoV-2 is a recently emerged, novel human coronavirus responsible for the currently ongoing COVID-19 pandemic. Recombination is a well-known evolutionary strategy of coronaviruses, which may frequently result in significant genetic alterations, such as deletions throughout the genome. In this study we identified a co-infection with two genetically different SARS-CoV-2 viruses within a single patient sample via amplicon-based next generation sequencing in Hungary. The recessive strain contained an 84 base pair deletion in the receptor binding domain of the spike protein gene and was found to be gradually displaced by a dominant non-deleterious variant over-time. We have identified the region of the receptor-binding domain (RBD) that is affected by the mutation, created homology models of the RBDΔ84 mutant, and based on the available experimental data and calculations, we propose that the mutation has a deteriorating effect on the binding of RBD to the angiotensin-converting enzyme 2 (ACE2) receptor, which results in the negative selection of this variant. Extending the sequencing capacity toward the discovery of emerging recombinant or deleterious strains may facilitate the early recognition of novel strains with altered phenotypic attributes and understanding of key elements of spike protein evolution. Such studies may greatly contribute to future therapeutic research and general understanding of genomic processes of the virus.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Amino Acid Sequence , Animals , Base Sequence , Binding Sites , COVID-19/metabolism , COVID-19/virology , Cell Line , Chlorocebus aethiops , Computer Simulation , Humans , Pandemics , Protein Binding , Protein Domains , Sequence Deletion , Vero Cells
3.
Viruses ; 12(12)2020 12 06.
Article in English | MEDLINE | ID: covidwho-967433

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus 2 is the third highly pathogenic human coronavirus in history. Since the emergence in Hubei province, China, during late 2019, the situation evolved to pandemic level. Following China, Europe was the second epicenter of the pandemic. To better comprehend the detailed founder mechanisms of the epidemic evolution in Central-Eastern Europe, particularly in Hungary, we determined the full-length SARS-CoV-2 genomes from 32 clinical samples collected from laboratory confirmed COVID-19 patients over the first month of disease in Hungary. We applied a haplotype network analysis on all available complete genomic sequences of SARS-CoV-2 from GISAID database as of 21 April 2020. We performed additional phylogenetic and phylogeographic analyses to achieve the recognition of multiple and parallel introductory events into our region. Here, we present a publicly available network imaging of the worldwide haplotype relations of SARS-CoV-2 sequences and conclude the founder mechanisms of the outbreak in Central-Eastern Europe.


Subject(s)
COVID-19/epidemiology , Disease Outbreaks , RNA, Viral/genetics , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Sequence Analysis, DNA , COVID-19/virology , China/epidemiology , Europe/epidemiology , Europe, Eastern/epidemiology , Gene Regulatory Networks , Genome, Viral , Humans , Hungary/epidemiology , Oropharynx/virology
SELECTION OF CITATIONS
SEARCH DETAIL